Truffles are hypogeous fungi predominantly of the phylum Ascomycota that have been historically valued for their dual significance as culinary delicacies and therapeutic agents. Indigenous communities in the Middle East and North Africa (MENA) traditionally used desert truffles as aphrodisiacs and to treat ocular and inflammatory conditions. At the same time, European sources have documented the medicinal and nutritional significance of the truffles since the 17th century. Truffles are rich in functional compounds, including terpenoids, polysaccharides, phenolic compounds, and essential fatty acids. Several studies suggest that these bioactive compounds exhibit antioxidant, antimicrobial, anti-inflammatory, anticancer, and immunomodulatory properties. The nutritional value of truffles has proteins/amino acids, dietary fibers, vitamins, and minerals. Recently, silver nanoparticles synthesized from desert truffles showed antibacterial and antifungal activities. These nutritional attributes may help prevent lifestyle-related diseases such as diabetes, cardiovascular disorders, and cancer. This review introduces the ethnomedicinal, nutritional, biochemical, and pharmacological evidence on truffles, emphasizing their possible integration into functional foods and therapeutic strategies.
SHALLAL, Ahmed Farhan , ABDULLAH, Shahlaa Mohammed , RAZAQ, Chawan Hazhar , & AHMED, Asmaa Sayed (2026).
The Significance of Truffles for Human Health.
Journal of Mycology and Truffle,
1(1):
1-11.
https://doi.org/10.65999/mycotruffle.2026.22
Al Obaydi, M.F., Hamed, W.M., Al Kury, L.T., & Talib, W.H. (2020). Terfezia boudieri: A desert truffle with anticancer and immunomodulatory activities. Frontiers in Nutrition, 7, 38. https://doi.org/10.3389/fnut.2020.00038
Al-Damegh, M.A. (2014). Tirmania (Zubaidi) and Terfezia (Khallasi) fungi preparation method modulates body and testicular weights and blood and testicular testosterone concentration in albino rats. The Journal of American Science, 10, 60-66.
Al-Laith, A.A.A. (2010). Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. Journal of Food Composition and Analysis, 23(1), 15-22. https://doi.org/10.1016/j.jfca.2009.07.005
Alrhmoun, M., Sulaiman, N., Mattalia, G., Ahmed, H. M., Khatib, C., Cantürk, Y.Y., Zucca, G., Ammam, A., Ahmad, M., & Pieroni, A. (2025). Ethnoecology of desert truffles hunting: A cross-cultural comparative study on practices and perceptions in the Mediterranean and the Near East. Journal of Arid Environments, 229, 105367. https://doi.org/10.1016/j.jaridenv.2025.105367
Aponte-López, A., Fuentes-Pananá, E.M., Cortes-Muñoz, D., & Muñoz-Cruz, S. (2018). Mast cell, the neglected member of the tumor microenvironment: role in breast cancer. Journal of Immunology Research, 2018(1), 2584243. https://doi.org/10.1155/2018/2584243
Baldelli, S., Aiello, G., De Bruno, A., Castelli, S., Lombardo, M., Stocchi, V., & Tripodi, G. (2025). Bioactive compounds and antioxidant potential of truffles: A comprehensive review. Antioxidants, 14(11), 1341. https://doi.org/10.3390/antiox14111341
Beara, I.N., Lesjak, M.M., Četojević-Simin, D.D., Marjanović, Ž.S., Ristić, J.D., Mrkonjić, Z.O., & Mimica-Dukić, N.M. (2014). Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chemistry, 165, 460-466. https://doi.org/10.1016/j.foodchem.2014.05.116
Casarica, A., Moscovici, M., Daas, M., Nicu, I., Panteli, M., & Rasit, I. (2016a). A purified extract from brown truffles of the species Terfezia claveryi chatin and its antimicrobial activity. Farmacia, 64(2), 298-301.
Casarica, D., Santi, M., Masi, M., & Bianchi, A. (2016b). In vitro dose and duration dependent approaches for the assessment of ameliorative effects of nanoconjugated vancomycin against Staphylococcus aureus infection induced oxidative stress in murine peritoneal macrophages. Microbial Pathogenesis, 91, 74-84. https://doi.org/10.1016/j.micpath.2015.11.001
Damas, B.A., Wheater, M.A., Bringas, J.S., & Hoen, M.M. (2011). Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. Journal of Endodontics, 37(3), 372-375. https://doi.org/10.1016/j.joen.2010.11.027
Di Stefano, V., Lauria, A., Pitonzo, R., & Gentile, C. (2020). Vaccinium macrocarpon (Cranberry)-based dietary supplements: Variation in mass uniformity, proanthocyanidin dosage and anthocyanin profile demonstrates quality control standard needed. Nutrients, 12(4), 992. https://doi.org/10.3390/nu12040992
Dyary, H.O. (2020). Subacute toxicity of brown truffle (Terfezia claveryi) on Sprague–Dawley rats. The Iraqi Journal of Veterinary Medicine, 44(2), 103-112. https://doi.org/10.30539/ijvm.v44i2.982
El Enshasy, H., Elsayed, E. A., Aziz, R., & Wadaan, M. A. (2013). Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle East. Evidence‐Based Complementary and Alternative Medicine, 2013(1), 620451. https://doi.org/10.1155/2013/620451
Elsayed, A. A., El Enshasy, H., Wadaan, M. A. M., & Aziz, R. (2014). Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators of Inflammation, 2014, 805841. https://doi.org/10.1155/2014/805841
Enshasy, H.E. (2011). Immunomodulators. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_8
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359-E386. https://doi.org/10.1002/ijc.29210
Ferreira, I., Dias, T., Mouazen, A. M., & Cruz, C. (2023). Using science and technology to unveil the hidden delicacy Terfezia arenaria, a desert truffle. Foods, 12(19), 3527. https://doi.org/10.3390/foods12193527
Friedman, M. (2016). Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods, 5(4), 80. https://doi.org/10.3390/foods5040080
Gajos, M., & Hilszczańska, D. (2013). Research on truffles: Scientific journals analysis. Scientific Research and Essays, 8, 1837-1847.
Gajos, M., Ryszka, F., & Geistlinger, J. (2014). The therapeutic potential of truffle fungi: a patent survey. Acta Mycologica, 49(2), 305-318.
Guo, T., Wei, L., Sun, J., Hou, C. L., & Fan, L. (2011). Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chemistry, 127(4), 1634–1640. https://doi.org/10.1016/j.foodchem.2011.02.030
Hamza, A., Jdir, H., & Zouari, N. (2016). Nutritional, antioxidant and antibacterial properties of Tirmania nivea, a wild edible desert truffle from Tunisia arid zone. Medicinal & Aromatic Plants, 5(258), 2167-0412. https://doi.org/10.4172/2167-0412.1000258
Hateet, R.R., & Muhsin, T.M. (2020). Study cytotoxicity, antibacterial activity, and compositions by FT-IR and GC-MS for organic extract of white Iraqi desert truffle Tirmania nivea. Periódico Tchê Química, 17(36), 18.
Hilszczańska, D., Rosa-Gruszecka, A., Szmidla, H., & Janeczko, A. (2014). Environmental conditions that promote the occurrence of truffles (Tuber spp.) on historical sites in Poland. Sylwan, 158(10), 747-754.
Hilszczańska, D., Rosa-Gruszecka, A., Szmidla, H., & Janeczko, A. (2017). History and perspectives of utilisation and research on truffles in Poland. Sylwan, 161(4), 320-327.
Hilszczańska, D., Szmidla, H., Rosa-Gruszecka, A., & Sierota, Z. (2019). A survey of the knowledge of truffles among Polish foresters and implications for environmental education. Forests, 10, 365. https://doi.org/10.3390/f10050365
Ibrahim, A.H., Al-Rawi, S.S., Majid, A.A., Rahman, N.A., Abo-Salah, K.M., & Ab Kadir, M.O. (2011). Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. Procedia Food Science, 1, 1953-1959. https://doi.org/10.1016/j.profoo.2011.09.287
Janakat, S., Al‐Fakhiri, S., & Sallal, A.K. (2004a). A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(10), 810-813. https://doi.org/10.1002/ptr.1563
Janakat, S., Al-Tawaha, A., & Abu-Alruz, K. (2004b). Antimicrobial activity of aqueous extracts of Terfezia claveryi. Journal of Ethnopharmacology, 95(1), 21–26. https://doi.org/10.1016/j.jep.2004.06.004
Kasper, J., Hermanns, M. I., Bantz, C., Maskos, M., Stauber, R., Pohl, C., Unger, R. E., & Kirkpatrick, C. J. (2011). Inflammatory and cytotoxic responses of an alveolar–capillary coculture model to silica nanoparticles: Comparison with conventional monocultures. Particle and Fibre Toxicology, 8(1), 1–16. https://doi.org/10.1186/1743-8977-8-1
Khan, F.S.; Hussain, I.; Akram, M.; & Owaid, M.N. (2022). Truffles: The Cultivation and Health Benefits. In: Arya, A., Rusevska, K. (Eds). Biology, Cultivation and Applications of Mushrooms. Springer, Singapore. pp 285-300. https://doi.org/10.1007/978-981-16-6257-7_10
Kong, F., Li, F. E., He, Z., Jiang, Y., Hao, R., Sun, X., & Tong, H. (2014). Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus. International Journal of Biological Macromolecules, 69, 561-566. https://doi.org/10.1016/j.ijbiomac.2014.05.025
Lee, H., Nam, K., Zahra, Z., & Farooqi, M.Q.U. (2020). Potentials of truffles in nutritional and medicinal applications: A review. Fungal Biology and Biotechnology, 7,9. https://doi.org/10.1186/s40694-020-00097-x
Li, L.F., Liu, H.B., Zhang, Q.W., Li, Z.P., Wong, T.L., Fung, H.Y., Zhang, J.X., Bai, S.P., Lu, A.P., & Han, Q.B. (2018). Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, anti-tumor, immunomodulating and gut-microbiota modulatory properties. Scientific Reports, 8(1), 6172. https://doi.org/10.1038/s41598-018-22885-7
Mamta, Misra, K., Dhillon, G.S., Brar, S.K., & Verma, M. (2014). Antioxidants. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_6
Mandeel, Q. A., & Al-Laith, A. A. A. (2007). Ethnomycological aspects of the desert truffle among native Bahraini and non-Bahraini peoples of the Kingdom of Bahrain. Journal of Ethnopharmacology, 110(1), 118-129. https://doi.org/10.1016/j.jep.2006.09.014
Markman, J.L., & Shiao, S.L. (2015). Impact of the immune system and immunotherapy in colorectal cancer. Journal of Gastrointestinal Oncology, 6(2), 208-223. https://doi.org/10.3978/j.issn.2078-6891.2014.077
Moradali, M.F., Mostafavi, H., Ghods, S., & Hedjaroude, G.A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
Munteanu, I.G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Muriach, M., Flores-Bellver, M., Romero, F.J., & Barcia, J.M. (2014). Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative Medicine and Cellular Longevity, 2014, 102158. https://doi.org/10.1155/2014/102158
Mustafa, A.M., Angeloni, S., Nzekoue, F.K., Abouelenein, D., Sagratini, G., Caprioli, G., & Torregiani, E. (2020). An overview on truffle aroma and main volatile compounds. Molecules, 25(24), 5948. https://doi.org/10.3390/molecules25245948
Osthues, R.M., da Silva, S.N., Zavaglia, C.A., & Fialho, S.L. (2012). Study of the release potential of the antibiotic gentamicin from microspheres of BCP. Key Engineering Materials, 493, 269–274.
Owaid, M.N. (2016). Biodiversity and bioecology of Iraqi desert truffles (Pezizaceae) during season 2014. Journal of Aridland Agriculture, 2: 22-25. https://doi.org/10.19071/jaa.2016.v2.3046
Owaid, M.N. (2018). Bioecology and uses of desert truffles (Pezizales) in Middle Eastern. Walailak Journal of Science and Technology, 15(3): 179-188.
Owaid, M.N. (2022). Biosynthesis of Silver Nanoparticles from Truffles and Mushrooms and Their Applications as Nanodrugs. Current Applied Science and Technology, 22(5): 1-11. https://doi.org/10.55003/cast.2022.05.22.009
Owaid, M.N., Muslim, R.F., & Hamad, H.A. (2018). Mycosynthesis of silver nanoparticles using Terminia sp. desert truffle, pezizaceae, and their antibacterial activity. Jordan Journal of Biological Sciences, 11(4), 401-405.
Owaid, M.N., Rabeea, M.A., Abdul Aziz, A., Jameel, M.S, & Dheyab, MA. (2022). Mycogenic fabrication of silver nanoparticles using Picoa, Pezizales, characterization and their antifungal activity. Environmental Nanotechnology, Monitoring & Management, 17: 100612. https://doi.org/10.1016/j.enmm.2021.100612
Page, D.B., Bourla, A.B., Daniyan, A., Naidoo, J., Smith, E., Smith, M., Friedman, C., Khalil, D.N., Funt, S., Shoushtari, A.N., & Overwijk, W.W. (2015). Tumor immunology and cancer immunotherapy: summary of the 2014 SITC primer. Journal for Immunotherapy of Cancer, 3, 25. https://doi.org/10.1186/s40425-015-0072-2
Patel, S., Rauf, A., Khan, H., Khalid, S., & Mubarak, M. S. (2017). Potential health benefits of natural products derived from truffles: A review. Trends in Food Science & Technology, 70, 1–8. https://doi.org/10.1016/j.tifs.2017.09.009
Pattanayak, M., Samanta, S., Maity, P., Manna, D.K., Sen, I.K., Nandi, A.K., Panda, B.C., Chattopadhyay, S., Roy, S., Sahoo, A.K., & Gupta, N. (2017). Polysaccharide of an edible truffle Tuber rufum: Structural studies and effects on human lymphocytes. International Journal of Biological Macromolecules, 95, 1037-1048. https://doi.org/10.1016/j.ijbiomac.2016.10.092
Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J., & Hyun, J. W. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, 201(1), 92–100. https://doi.org/10.1016/j.toxlet.2010.12.010
Radif, H.M., Owaid, M.N., & Al-Bahrani, R.M. (2019). Evaluation influence of extract of Terfezia claveryi desert truffle, Pezizaceae, against Streptococcus pneumoniae, in vivo. Malaysian Journal of Biochemistry & Molecular Biology, 2: 21-25.
Rice-Evans, C. A., & Miller, N. J. (1996). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions, 24(3), 790-795. https://doi.org/10.1042/bst0240790
Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
Rondolini, M., Zotti, M., Bragato, G., Baciarelli Falini, L., Reale, L., & Donnini, D. (2024). The expanding truffle environment: A study of the microbial dynamics in the old productive site and the new Tuber magnatum Picco habitat. Journal of Fungi, 10(11), 800. https://doi.org/10.3390/jof10110800
Rosa-Gruszecka, A., Hilszczańska, D., Szmidla, H., & Sierota, Z. (2017). Truffle renaissance in Poland–history, present and prospects. Journal of Ethnobiology and Ethnomedicine, 13(1), 63. https://doi.org/10.1186/s13002-017-0163-x
Seema Patel, S. P. (2012). Food, health and agricultural importance of truffles: a review of current scientific literature. Current Trends in Biotechnology and Pharmacy, 6(1), 15-27.
Shahidi, F., & Zhong, Y. (2015). Antioxidants: Mechanisms and applications. Critical Reviews in Food Science and Nutrition, 55(5), 465–477. https://doi.org/10.1080/10408398.2012.678411
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781. https://doi.org/10.1016/j.jff.2015.01.047
Shallal, A. F. (2025a). Immunomodulatory Pathways of Some Biomarkers in Individuals with Renal Failure. Aro-The Scientific Journal of Koya University, 13(2), 326-333. https://doi.org/10.14500/aro.12474
Shallal, A. F. (2025b). Modulation of Immune Pathway and Biomarkers: Impacts of Lifestyle, Nutrition, and Therapeutic Interventions. World Journal of Pharmaceutical Research, 14(24), 419-430. https://doi.org/10.5281/zenodo.17750333
Shallal, A. F. (2026). Immune System Modulation: The Roles of Leukocytes, Vitamin D, Plant Extracts, Nanotechnology, and Biomarkers in Disease and Health. World Journal of Pharmaceutical Research, 15(3), 250-263. https://doi.org/10.5281/zenodo.18427459
Shallal, A.F., Razaq, C.H., & Owaid, M.N. (2025). Immunomodulatory Effects of Ganoderma lucidum on NK Cells: From Traditional Use to Modern Immunotherapy. Journal of Macrofungi, 1(1), 14-29. https://doi.org/10.65999/macrofungi.2025.27
Sinha, T. (2018). Tumors: benign and malignant. Cancer Therapy & Oncology International Journal, 10(3), 52-54.
Soloneski, S., & Larramendy, M.L. (2021). Introductory chapter: Cytotoxicity. In Cytotoxicity: New Insights Into Toxic Assessment. IntechOpen. https://doi.org/10.5772/intechopen.91554
Strojnik, L., Grebenc, T., & Ogrinc, N. (2020). Species and geographic variability in truffle aromas. Food and Chemical Toxicology, 142, 111434. https://doi.org/10.1016/j.fct.2020.111434
Sun, H., Ni, X., Zeng, D., Zou, F., Yang, M., Peng, Z., Zhou, Y. I., Zeng, Y., Zhu, H., Wang, H., & Yin, Z. (2017). Bidirectional immunomodulating activity of fermented polysaccharides from Yupingfeng. Research in Veterinary Science, 110, 22-28. https://doi.org/10.1016/j.rvsc.2016.10.015
Talib, W.H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Scientia Pharmaceutica, 85(3), 27. https://doi.org/10.3390/scipharm85030027
Talib, W.H., & AbuKhader, M.M. (2013). Combinatorial effects of thymoquinone on the anticancer activity and hepatotoxicity of the prodrug CB 1954. Scientia Pharmaceutica, 81(2), 519–530. https://doi.org/10.3797/scipharm.1211-15
Taş, M., Küçükaydın, S., Tel-Çayan, G., Duru, M.E., Öztürk, M., & Türk, M. (2021). Chemical constituents and their bioactivities from truffle Hysterangium inflatum. Journal of Food Measurement and Characterization, 15(5), 4181-4189. https://doi.org/10.1007/s11694-021-00993-9
Tayjanov, K., Khojimatov, O., Gafforov, Y., Makhkamov, T., Normakhamatov, N., & Bussmann, R. W. (2021). Plants and fungi in the ethnomedicine of the medieval East: A review. Ethnobotany Research and Applications, 22, 1-20.
Tejedor-Calvo, E., García-Barreda, S., Sánchez, S., Morte, A., Siles-Sánchez, M.D.L.N., Soler-Rivas, C., Santoyo, S., & Marco, P. (2022). Application of pressurized liquid extractions to obtain bioactive compounds from Tuber aestivum and Terfezia claveryi. Foods, 11(3), 298. https://doi.org/10.3390/foods11030298
Tejedor-Calvo, E., Morales, D., Marco, P., Sánchez, S., Garcia-Barreda, S., Smiderle, F.R., Iacomini, M., Villalva, M., Santoyo, S., & Soler-Rivas, C. (2020). Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Research International, 132, 109054. https://doi.org/10.1016/j.foodres.2020.109054
Turati, F., Rossi, M., Pelucchi, C., Levi, F., & La Vecchia, C. (2015). Fruit and vegetables and cancer risk: a review of southern European studies. British Journal of Nutrition, 113(S2), S102–S110. https://doi.org/10.1017/S0007114515000148
Uboldi, C., Giudetti, G., Broggi, F., Gilliland, D., Ponti, J., & Rossi, F. (2012). Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation, or genotoxicity in Balb/3T3 mouse fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1–2), 11–20. https://doi.org/10.1016/j.mrgentox.2011.10.010
Urbach, J.M., & Ausubel, F.M. (2017). The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proceedings of the National Academy of Sciences, 114(5), 1063-1068. https://doi.org/10.1073/pnas.1619730114
Üstün, N., Bulam, S., & Peksen, A. (2018). Biochemical properties, biological activities and usage of truffles. In Proceedings of the Conference: International Congress on Engineering and Life Science, Kastamonu, Turkey (pp. 26-29).
Villares, A., García-Lafuente, A., Guillamón, E., & Ramos, Á. (2012). Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. Journal of Food Composition and Analysis, 26(1-2), 177-182. https://doi.org/10.1016/j.jfca.2011.12.003
Wahle, K.W.J., Brown, I., Rotondo, D., Heys, S.D. (2010). Plant Phenolics in the Prevention and Treatment of Cancer. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_4
Wasser, S.J.A.M.B. (2002). Medicinal mushrooms as a source of anti-tumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60, 258-274. https://doi.org/10.1007/s00253-002-1076-7
Wasser, S.P., Sokolov, D., Reshetnikov, S.V., & Timor-Tismenetsky, M. (2000). Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. International Journal of Medicinal Mushrooms, 2(1). https://doi.org/10.1615/IntJMedMushr.v2.i1.10
Yao, Y., Zhu, Y., & Ren, G. (2016). Immunoregulatory activities of polysaccharides from mung bean. Carbohydrate Polymers, 139, 61-66. https://doi.org/10.1016/j.carbpol.2015.12.001
Yin, Z., Liang, Z., Li, C., Wang, J., Ma, C., & Kang, W. (2021). Immunomodulatory effects of polysaccharides from edible fungus: a review. Food Science and Human Wellness, 10(4), 393-400. https://doi.org/10.1016/j.fshw.2021.04.001